Ultrasound renal stone diagnosis based on convolutional neural network and VGG16 features

نویسندگان

چکیده

This paper deals with the classification of kidneys for renal stones on ultrasound images. Convolutional neural network (CNN) and pre-trained CNN (VGG16) models are used to extract features from Extreme gradient boosting (XGBoost) classifiers random forests classification. The extracted VGG16 compare performance XGBoost forest. An image normal was classified. work uses 630 real images Al-Diwaniyah General Teaching Hospital (a lithotripsy center) in Iraq. Classifier is evaluated using its accuracy, recall, F1 score. With an accuracy 99.47%, CNN-XGBoost most accurate model.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Document Image Features With SqueezeNet Convolutional Neural Network

The classification of various document images is considered an important step towards building a modern digital library or office automation system. Convolutional Neural Network (CNN) classifiers trained with backpropagation are considered to be the current state of the art model for this task. However, there are two major drawbacks for these classifiers: the huge computational power demand for...

متن کامل

Non-melanoma skin cancer diagnosis with a convolutional neural network

Background: The most common types of non-melanoma skin cancer are basal cell carcinoma (BCC), and squamous cell carcinoma (SCC). AKIEC -Actinic keratoses (Solar keratoses) and intraepithelial carcinoma (Bowen’s disease)- are common non-invasive precursors of SCC, which may progress to invasive SCC, if left untreated. Due to the importance of early detection in cancer treatment, this study aimed...

متن کامل

A Radon-based Convolutional Neural Network for Medical Image Retrieval

Image classification and retrieval systems have gained more attention because of easier access to high-tech medical imaging. However, the lack of availability of large-scaled balanced labelled data in medicine is still a challenge. Simplicity, practicality, efficiency, and effectiveness are the main targets in medical domain. To achieve these goals, Radon transformation, which is a well-known t...

متن کامل

EMG-based wrist gesture recognition using a convolutional neural network

Background: Deep learning has revolutionized artificial intelligence and has transformed many fields. It allows processing high-dimensional data (such as signals or images) without the need for feature engineering. The aim of this research is to develop a deep learning-based system to decode motor intent from electromyogram (EMG) signals. Methods: A myoelectric system based on convolutional ne...

متن کامل

Associating Grasping with Convolutional Neural Network Features

In this work, we provide a solution for posturing the anthropomorphic Robonaut-2 hand and arm for grasping based on visual information. A mapping from visual features extracted from a convolutional neural network (CNN) to grasp points is learned. We demonstrate that a CNN pre-trained for image classification can be applied to a grasping task based on a small set of grasping examples. Our approa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Power Electronics and Drive Systems

سال: 2023

ISSN: ['2722-2578', '2722-256X']

DOI: https://doi.org/10.11591/ijece.v13i3.pp3440-3448